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Quantitative EEG Changes in Youth With ASD
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Abstract— Mindfulness has growing empirical support
for improving emotion regulation in individuals with Autism
Spectrum Disorder (ASD). Mindfulness is cultivated through
meditation practices. Assessing the role of mindfulness
in improving emotion regulation is challenging given the
reliance on self-report tools. Electroencephalography(EEG)
has successfully quantified neural responses to emotional
arousal and meditation in other populations, making it ideal
to objectively measure neural responses before and after
mindfulness (MF) practice among individuals with ASD.
We performed an EEG-based analysis during a resting state
paradigm in 35 youth with ASD. Specifically, we developed
a machine learning classifier and a feature and channel
selection approach that separates resting states preceding
(Pre-MF) and following (Post-MF) a mindfulness meditation
exercise within participants. Across individuals, frontal and
temporal channels were most informative. Total power in
the beta band (16-30 Hz), Total power (4-30 Hz), relative
power in alpha band (8-12 Hz) were the most informative
EEG features. A classifier using a non-linear combination of
selected EEG features from selected channel locations sep-
arated Pre-MF and Post-MF resting states with an average
accuracy, sensitivity, and specificity of 80.76%, 78.24%, and
82.14% respectively. Finally, we validated that separation
between Pre-MF and Post-MF is due to the MF prime rather
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than linear-temporal drift. This work underscores machine
learning as a critical tool for separating distinct resting
states within youth with ASD and will enable better clas-
sification of underlying neural responses following brief MF
meditation.

Index Terms— Autism, EEG, mindfulness, resting-state.

I. INTRODUCTION

AUTISM spectrum disorder (ASD) is a neurodevelop-
mental condition characterized by challenges in social

communication and restrictive and repetitive behaviors [1].
Poor emotion regulation (ER), the inability to monitor and
modify emotional arousal and reactivity to engage in adaptive
behavior, is as much as 7 times more common among individ-
uals with ASD than neurotypical counterparts. Further, recent
research suggests that poor ER likely underlies co-occurring
mental health conditions, use of crisis services, and risk for
suicide in autism [2], [3], [4], [5], [6]. Given the prevalence
of ER problems in ASD, there is a need to both identify
approaches to remediate ER problems and measure improve-
ment in ER [7].

Mindfulness is an experience of present-moment and non-
judgmental awareness that is cultivated through meditation
practices [8]. MF meditation involves concentration exercises
that are used to cultivate awareness of present moment expe-
riences in an open and non-judgmental manner [9], [10].
Common MF meditations include awareness of breathing,
walking meditation, body scans, and mindful movement.
MF meditations are easily tailored to individual cognitive and
functional needs with modified language and length, which
is ideal for the heterogenous needs and presentations across
individuals on the autism spectrum [11]. Findings across prior
studies [12], [13], [14] demonstrated that interventions that uti-
lize MF meditaitons, called mindfulness-based interventions,
improved outcomes for individuals with ASD [15].

While MF appears to be a promising treatment approach
in ASD, these studies have relied upon self-report mind-
fulness measurements that are adherent to self-interest bias
and autism-specific limitations in awareness and alexithymia.
Understanding neural and physological responses during MF
meditations can enhance the measurement of MF as a
mechaism of change in treatments. As such, this paper seeks
to improve our understanding of neural responses that occur
following MF meditations.

EEG has been shown to be an effective tool to investigate
neurophysiological effects of MF meditation in populations
without ASD [16], [17], [18]. Nyhus et al. [17] used EEG
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to demonstrate a correlation between between EEG theta
oscillations and self-report MF questionnaire responses in
a non-ASD sample. Qiu et al. [18] designed a game with
conditions of varying difficulty in order to gauge frustration
while using an EEG headband. They detected changes in
improved game accuracy following a calming meditation
exercise. Bostanov et al. [16] evaluated pre-post-therapy
changes in event-related brain potentials (ERPs) recorded
during a MF meditation task and found a correlation
between the ERPs and other self-report measures of MF
and meditation practice. Furthermore, a review paper from
2015 [19] collected data from 56 papers on EEG and
MF meditation and found that prolonged MF practice was
associated with increased alpha and theta power in healthy
individuals [20] as well as patient populations.

Despite the growing empirical support of MF for improving
outcomes among individuals with ASD [15], research has yet
to examine the neurophysiological effects of MF meditations.
Instead, autism research on MF meditations has relied on
self-report measures [5]. Given the promising work using
EEG methods to measure the impact of MF meditation in
neurotypical populations, this study sought to apply EEG
methods to measure within-session changes in ER following
a single MF meditation practice among youth with ASD.
Specifically, this study developed a classification framework
to analyze the effect of a MF meditation exercise via brain
signals of youth with ASD. The MF exercise consisted
of a brief; two-minute guided awareness of breathing MF
meditation completed at the middle of battery of tasks
including an Affective Posner task [21]. One of the unique
contributions of the presented study is investigating the
neurophysiological effect of brief MF exercise, as most
previous research assessed the effects a full mindfulness-
based intervention, which includes several weeks of treatment
and multiple different meditation exercise [20], [22].

For each participant, we collected resting-state EEG twice
between tasks before the brief MF exercise and twice between
tasks after the MF exercise. Our goal was to generate a
classifier that would delineate between EEG resting states
directly before and after the MF exercise, specifically, as a
means to identify the change in neural response generated by
the MF exercise. Additionally, we verified that this classifier
did not relate to other instances of linear temporal order but
is rather an effect of the MF exercise itself. To accomplish
this, we applied the weighted sequential forward selection
algorithm (WSFS) to obtain the most informative features
accompanying channel locations for each participant. We then
developed a classifier at the individual level that clearly
separates resting-state EEG data before MF meditation exer-
cise (Pre-MF) and after MF meditation exercise (Post-MF)
within a task battery that interleaved resting state and an
Affective Posner task. As a result, the classifier successfully
differentiated between Pre-MF and Post-MF conditions with
an average accuracy, sensitivity to Pre-MF, and sensitivity to
Post-MF of 94.72%, 97.34% and 91.98%, respectively, with
low variance across participants using the most informative
EEG features within each participant. Additionaly, the wilx-
ocon ranksum tests were applied on rest-states represented
by individual features in order to demonstrate whether these
changes generalize across participants.

II. METHODOLOGY

A. Participants and Experimental Setup

As part of a larger and ongoing randomized clinical trial
across two sites, participants were recruited to complete EEG
procedures at a baseline assessment appointment. A total
of 40 participants with ASD completed EEG procedures.
5 participants were excluded due to technical issuses, since
they did not have all four rest state EEG data. Inclusion
criteria for the larger study were as follows: (1) ages 12-21,
inclusive; (2) a clinical diagnosis of ASD, confirmed by
a research reliable administration of the Autism Diagnostic
Observation Schedule, Second Edition (ADOS-2)[23]; (3)pres-
ence of emotion dysregulation at an initial phone screen
(Emotion Dysregulation Inventory raw score ≥ 7). All parents
or guardians provided written informed consent approved by
the University of Pittsburgh Institutional Review Board (IRB
#STUDY17070496). During the consent and youth assent
process, the participants were informed that their safety and
the confidentiality of the collected data are the primary con-
siderations. Participants were told that at any point during
the experimental procedure, if they feel any discomfort, they
could stop the experiment. Furthermore, all the experimental
procedures described below were approved by the University
of Pittsburgh Institutional Review Board which served as the
single site IRB of record.

At the first site, EEG data were recorded using a Wearable
Sensing DSI-24 wireless dry electrode EEG headset with
21 channels at a sampling rate of 300 Hz; channel locations
are, P3, C3, F3, Fz, F4, C4, P4, Cz, A1, Fp1, Fp2, T3,
T5, O1, O2, F7, F8, A2, T6, and T4 according to the
international 10-20 system. The reference sensor was placed
at the nominal Pz position, while ground was placed at the
earlobes. At the second site, Electroencephalography (EEG)
was recorded from 32 Ag/AgCl electrodes using a BrainVision
actiCAP snap system (EASYCAP GmbH, Herrsching, Ger-
many). Sensor placement was based on the international 10–20
system with a ground electrode mounted at FPz. Sensors were
referenced online to the left earlobe. Data were collected using
a BrainVision ActiCHamp amplifier (Brain Products GmbH,
Munich, Germany) and were digitized at 500 Hz.

All participants were seated in a comfortable chair facing
a computer screen and were asked to play a card game based
on an Affective Posner task. The Affective Posner task is a
neuropsychological test often used to investigate the effects
of covert orienting of attention in response to different cue
conditions [24], [25]. The proposed Affective Posner task
with deception consists of four card games with “breaks”
interleaved between games in which resting state data was
collected. The cards are respresented as two white squares
where there is a star under one of the two white squares.
During the experiment, a blue rectangle appears on one of the
two white squares as a cue with the correct location of the star
with 75% probability. Then, a feedback of Lose, Win, or Too
Slow was presented to players based on their answer to the
location of the star. Too slow feedback is provided after 60%
of the correct responses in Task 3 as a deception component.
Task 4 is the repitition of Task 3. Task 5 is played at the end
without deception. EEG data was not collected during Task 1
or Task 2, which were used as practice rounds to learn how to
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Fig. 1. The shematic of pre-processing using EEGLAB.

play the game. In Task 1 there was Win and Lose feedback.
Task 2 was the same as Task 1 with Win, Lose, and Too slow
feedback. In this study, we focus on four resting state periods
(see Fig. 1.A): TaskRest1 (between two Posner tasks before
Pre-MF), Pre-MF (immediately before MF exercise), Post-MF
(immediately following MF exercise), and TaskRest2 (between
two Posner tasks after Post-MF). TaskRest1 lasted 2-minutes,
while all other resting states were in 1-minute in duration. The
Mindfulness condition consisted of participants listening to a
MF meditation led by a MF-Based Stress Reduction teacher
who has clinical expertise working with individuals with ASD
(co-author). The exercise, developed specifically for this study,
consisted of a 2-minute awareness of breathing task, based on
Vipassana meditation practices common in MF-Based Stress
Reduction. The guided practice encouraged participants to
focus on physical sensations of natural breathing and non-
judgmental awareness of any instances of inattention. This
was delivered through an audio recording and did not include
visual cues.

In this study, we aim to investigate the changes in rest
state brain activities of individuals with ASD when there is
mindfulness exercise or not mindfulness exercise. As it can
be seen from Fig 2.A., there was no mindfulness exercise
between TaskRest1 and Pre-MF resting state, instead there is
Posner Task Task3 card game. We denote this as No MF con-
dition 1. Similarly, there is no mindfulness exercise between
Post-MF and TaskRest2 resting state but there is Posner Task
Task4 card game between Post-MF and TaskRest2 resting state
which we denote as no MF condition 2. In contrary, there is a
mindfulness exercise between Pre-MF and Post-MF rest state,
and we denote this as MF condition

B. Pre-Processing With EEGLAB

Pre-processing of EEG data was performed using
EEGLAB(v2022.0)[26] within MATLAB R2021b. The pre-
processing pipeline is shown in Fig.1.

First, the data collected from the second site is down-
sampled to 300 Hz. Then, a finite impulse response (FIR)
Kaiser-windowed band-pass filter with cut-off frequencies of
1 and 30 Hz was used to filter the resting-state EEG data
collected from both sites. Bad EEG channels were removed
if they had no signal for at least 5 seconds or if the line
noise relative to the channel signal was greater than 4 standard
deviations from the signal mean. After channel removal,
artifact subspace reconstruction (ASR) was completed. ASR
corrects bad EEG signal segments by comparing clean por-
tions of the data to the rest of the data [27]. PCA is used
and for any components’ standard deviations greater than
30 times the standard deviations from the clean components,
those components are rejected. Next, any data segments that
exceed the mean power by more than 20 standard deviations
within atleast one quarter of the EEG channels are removed.
All EEGLAB parameters were selected using visual inspection
of the data.

Then, Infomax independent component analyses (ICA) was
applied to remove additionalartifacts [28], [29]. Any inde-
pendent components that were identified as brain activity
with at least 70\% confidence, using the ICLabel classifier
in EEGLAB [30], were kept and all other components were
removed After that, the EEG data was re-referenced to the
mean of channels A1 and A2. Next, the resting state EEG
data was segmented into one-second epochs. Lastly, channel
data that was removed during pre-processing was interpolated
using spherical spline interpolation.

C. Feature Extraction
Feature extraction was performed for all four resting states

(see Fig.2.A). Spectral features were calculated using Welch’s
periodogram method [31] for each channel; P3, C3, F3, Fz,
F4, C4, P4, Cz, Fp1, Fp2, T3, T5, O1, O2, F7, F8, T6, T,
Pz. A total of seven spectral features were calculated for each
epoch and each channel. The spectral EEG features calculated
for each channel are as follows: (1) the total power across
the spectral range of this study (4-30 Hz); the total power in
the (2) Theta (4-7 Hz), (3) Alpha (8-12 Hz), and (4) Beta
(16-30 Hz) frequency bands; the relative power (i.e., unique
contribution of each band) computed as the ratio of spectral
band to overall total power in the (5) Theta, (6) Alpha, (7)
and Beta frequency bands [32].

D. Separation of Resting States Based on Individual
Feature Comparison

The Wilcoxon rank-sum test with a significance level of
0.05 was conducted to investigate whether there is a significant
difference between and across resting states represented by
each spectral feature in overall channels, and at each brain
region. The Wilcoxon rank test is a nonparametric hypothesis
test where the alternative hypothesis states that both classes
come from different distributions [33]. More specifically, each
spectral feature is averaged over all channels and averaged
over each brain region for each trial across participants to
form a vector for each rest state separately. Then, we per-
formed a Wilcoxon rank-sum test over these feature vec-
tors to investigate the significance between (i) TaskRest1 vs
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Fig. 2. A. Order of task presentation for participants. Resting states were interweaved with the affective posner task (not addressed in the current
study). B. Classification procedure framework. The SVM classifier was trained to separate Pre-MF and Post-MF resting states. The same SVM
classifier was used to obtain SVM scores of TaskRest1 and TaskRest2 resting states.

Pre-MF, (ii) TaskRest1 vs Post-MF, (iii) TaskRest1 vs
TaskRest2, (iv) Pre-MF vs Post-MF, (v)Pre-MF-TaskRest2 and
(vi) Post-MF vs TaskRest2 rest state represented by each
feature over all channels, and at each brain region: frontal
(F3, F4, F7, F8), midline (Cz, Pz, Fz), prefrontal (Fp1, Fp2),
parietal (P3, P4), occipital (O1, O2), temporal (T3, T4, T5,
T6), and central (C3, C4).

E. Machine Learning: Feature Selection
and Classification

The features described in section 2.2 were normalized to
have a mean of zero using z-score normalization across all
epochs at the individual level and concatenated to form a
feature vector. After normalization, the weighted sequential
feature selection (WSFS) algorithm was used to obtain the
most informative features at identified channel locations for
each participant. The WSFS algorithm is a feature selection
technique which uses a bottom-up search starting from an
empty set of features and gradually adds features that max-
imize classifier performance [21]. More specifically, the cost
function of the WSFS algorithm was set up to maximize the
classification rate of the radial basis kernel support vector
machine (RBF SVM) classifier over all feasible feature subsets
while maintaining a balance between correct classification
rates of Pre-MF and Post-MF. In this step, 10-fold cross
validation was adopted to train the RBF SVM classifier with a
chance level of 50% with 5 Monte Carlo simulations in order
to find the most robust subset of features without overfitting
for each participant. Once the most informative features for
each subject were selected, a RBF SVM classifier was first

trained to identify significant differences between the resting
state EEG data before (Pre-MF) and after (Post-MF) a MF
meditation exercise as seen in the first step of Fig. 1.B. 5-fold
cross validation was applied to overcome overfitting. Then,
we conducted 100 Monte Carlo runs (each with different
random initialization) for each participant. Next SVM scores
of Pre-MF and Post-MF resting states were calculated by
averaging over 100 Monte Carlo runs.

In the second step of Fig. 1.B, the pre-trained classifier was
used in the classification of TaskRest1 versus Pre-MF and for
the classification of Post-MF versus TaskRest2 to obtain SVM
scores of TaskRest1 and TaskRest2.

Additionally, we applied a two-sided Wilcoxon rank-sum
test with a significance level of 0.05 across the two sites
using the classification accuracies, sensitivities, specificity in
order to test whether there is a statistical significance across
data collection sites. The two-sided Wilcoxon rank test is a
nonparametric hypothesis test where the alternative hypothesis
states that both classes come from different distributions [33].

F. Validation

Next, we validated that the separation between the resting
state EEG data before and after MF-meditation exercise was a
result of the MF exercise itself (Fig. 1B). Thus, we sought
to show that the separation between Pre-MF and Post-MF
(i.e., distinctiveness of MF classification) is greater than
the separation between any other two consecutive resting
state EEG periods (e.g., TaskRest1 versus Pre-MF; Post-MF
versus TaskRest2). We used the SVM scores generated by
the classifier to calculate the separation between each set
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of two consecutive resting states. We first calculated the
probability distribution of SVM scores of all resting states
through kernel density estimation at the individual level. Next,
we investigated if there is any separation between resting
states using the distribution of SVM scores of resting states.
Specifically, we calculated the distance between resting states
using the learned kernel density-based estimations and sym-
metric Kullback Leibler (Sym KL) distance metric, which is
applicable to compare two probability density functions [34].
In following, using the probability density functions of SVM
scores of resting state PSV M BSLi , and resting state i (i =
1,2,3,4: TaskRest1, Pre-MF, Post-MF, and TaskRest2), we for-
mulated the symmetric Kullback Leibler distance measurement
between baselines (1), as shown at the bottom of the page.

Using the KL distance metric, we calculated the distances
between Pre-MF and Post-MF (DSV M (BSL2 | BSL3)),
between TaskRest1 and Pre-MF (DSV M (BSL1 | BSL2)),
and between Post-MF and TaskRest2(DSV M (BSL3 | BSL4)).
These are shown in equations (2) and (3), as shown at the
bottom of the page.

Finally, we calculated the probability density functions of
Distance1 and Distance2 using a normalized histogram
across all individuals to investigate the probability that the
separation between Pre-MF and Post-MF is larger than the
separation between any other two resting states. Note that
Distance1 is used to compare the separation between Pre-MF
and Post-MF with the separation between TaskRest1 and
Pre-MF. Furthermore, Distance2 is used to compare the sep-
aration between Pre-MF and Post-MF with the separation
between Post-MF and TaskRest2. Distance1 and Distance2
take values between -1 and 1. When Distance1 is positive
it indicates that the effect of MF (i.e., the distance between
Pre-MF and Post-MF) is greater than the effect of linear time
at the beginning of the experiment (i.e., distance between
TaskRest1 and Pre-MF). Likewise, Distance2 is positive when
the distance between Pre-MF and Post-MF is greater than the
distance between Post-MF and TaskRest2.

III. RESULTS

The results of the Wilcoxon rank-sum test to investigate
the significant differences between between rest states, rep-
resented by each spectral feature averaged over all channels,
is presented in Table I.

The results of the Wilcoxon rank-sum test applied to each
spectral feature at each brain region is reported for Pre-MF

TABLE I
THE RESULTS OF WILCOXON RANK-SUM TEST APPLIED ON EACH

SPECTRAL FEATURE AVERAGED OVER ALL CHANNELS

BETWEEN REST STATES

TABLE II
THE RESULTS OF WILCOXON RANK-SUM TEST APPLIED ON EACH

SPECTRAL FEATURE AVERAGED OVER EACH BRAIN REGIONS OF

FRONTAL, MIDLINE, TEMPORAL, PARIETAL, PREFRONTAL,
OCCIPITAL AND CENTRAL FOR PRE-MF VS

POST-MF REST STATE

vs Post-MF in Table II, TaskRest1 vs Post-MF, TaskRest1 vs
TaskRest2, Pre-MF vs Post-MF, Pre-MF-TaskRest2, and
Post-MF vs TaskRest2 in Table S1 in the supplementary
document.

Then, we present the performance of the RBF kernel
SVM classifier in terms of accuracy, Pre-MF sensitivity, and
Post-MF sensitivity. Next, we provide a bar graph (Fig. 3)

DSV M (BSLi | BSL j) , i, j = 1, 2, 3, 4, i �= j DSV M (BSLi | BSL j)

= 1

2

∑
x∈X

[
PSV M BSLi (x) log

(
PSV M BSLi (x)

PSV M BSL j (x)

)
+ PSV M BSL j (x) log

(
PSV M BSL j (x)

PSV M BSLi (x)

)]
(1)

Distance1 =
[

DSV M (BSL2 | BSL3)

DSV M (BSL1 | BSL2) + DSV M (BSL2 | BSL3)
− DSV M (BSL1 | BSL2)

DSV M (BSL1 | BSL2) + DSV M (BSL2 | BSL3)

]
(2)

Distance2 =
[

DSV M (BSL2 | BSL3)

DSV M (BSL2 | BSL3) + DSV M (BSL3 | BSL4)
− DSV M (BSL3 | BSL4)

DSV M (BSL2 | BSL3) + DSV M (BSL3 | BSL4)

]
(3)
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Fig. 3. The average performance measurements of Pre-MF vs Post-MF
classifier.

and topographic map (Fig. 4) to show the features and brain
regions that contributed most frequently to the classifica-
tion between Pre-MF and Post-MF. Finally, we validate our
proposed classification scheme to indicate the separation of
Pre-MF and Post-MF is a result of MF by comparing the
distributions of SVM scores for the effect of MF (Pre-MF
vs Post-MF), early linear time shift (TaskRest1 vs Pre-MF),
and late linear time shift (Post-MF vs TaskRest2 ) through the
use of histograms (Fig. 5) of Distances 1 and 2 as developed
in equations (2) and (3).

Table I indicates the results of the Wilcoxon rank-sum test
applied on each spectral feature averaged over all channels
between resting states. The Wilcoxon rank-sum test over
Pre-MF and Post-MF rest state represented by each spec-
tral features averaged over all channels indicated that total
alpha, total power, total theta, and relative alpha band were
significantly higher in the Post-MF resting state with p-values
of 1.0848e-12, 0.00349, 0.00033 and 1.92e-18, respectively.
Total beta band power and relative beta band power were
significantly higher in Pre-MF than Post-MF with p-values
of 6.22e-23 and 9.34e-31, while relative theta band power did
not show any significant differences in comparison between
Pre-MF and Post-MF. Moreover, across the above-mentioned
six statistical tests, we observed that total alpha, total power,
and relative alpha band power indicated a significant increase
from TaskRest1 to Pre-MF. Then, the increase reached a
maximum in the Post-MF resting state, followed by a signif-
icant decrease in the end (TaskRest2). Total beta and relative
beta band indicated a significant increase from TaskRest1 to
Pre-MF. Then, the total beta and relative beta band power
decreased to a minimum in Post-MF followed by a significant
increase in TaskRest2.

The result of the Wilcoxon rank-sum test over Pre-MF
vs Post-MF rest state represented by each spectral feature
averaged within brain regions is represented in Table II. In this
table, we observed that total alpha and relative alpha band
power was significantly higher in Post-MF than Pre-MF in all
brain regions. Similarly, total beta and relative beta band power
was significantly higher in Pre-MF than Post-MF in all brain

regions. Moreover, relative theta power band did not show
any significant differences at temporal, prefrontal, or central
regions while relative theta power band was significantly
higher in Post-MF at occipital and frontal regions and higher in
Pre-MF at midline and parietal regions. Total power at frontal
and occipital regions did not show any significant differences
in Pre-MF vs Post-MF, but was significantly higher at midline,
temporal, parietal, prefrontal and central regions in Post-MF
than in Pre-MF.

Additionally, we investigated the behavior of each aver-
aged spectral feature at brain regions across resting states by
performing the Wilcoxon rank-sum test between TaskRest1
vs Pre-MF, TaskRest1 vs Post-MF, Pre-MF vs Post-MF,
TaskRest1 vs TaskRest2, Pre-MF-TaskRest2, and Post-MF
vs TaskRest2 resting states, as reported in Table S1 in the
supplementary document. As a result, total alpha band power
at frontal, central, midline, parietal, temporal, and occipital
regions indicated a significant increase from TaskRest1 to
Post-MF, followed by a significant decrease in TaskRest2.
However, total alpha power at the prefrontal region indicated
a trend that remains the same in significance from TaskRest1
to Pre-MF, followed by a significant increase in Post-MF and
a significant decrease in the end (TaskRest2).

The propagation of total power across rest states of
TaskRest1, Pre-MF, Post-MF and TaskRest2 follows a trend
that there was a significant increase from TaskRest1 to
Pre-MF, with a significant increase, reaching a maximum in
Post-MF, followed by a significant decrease in TaskRest2 at
midline, temporal, parietal, central while there was no change
in significance level in TaskRest2 at prefrontal brain region.
Total power at prefrontal brain regions indicated a significant
increase from TaskRest1 to Post-MF, then remain in the same
significant level in TaskRest2.

Total power at the occipital region indicated a significant
increase from TaskRest1 to Pre-MF. Then, the trend did not
change in the significance level through Pre-MF to Post-MF
but decreased in significance level in the end.

On the contrary, total theta band power at midline, parietal,
occipital, and central brain regions did not indicate any pattern
across resting states but total theta power band at frontal,
prefrontal and temporal regions indicated a trend that there was
no difference in significance level from TaskRest1 to Pre-MF
followed by a significant increase in Post-MF. Then, the trend
pursued a significant decrease in TaskRest2.

Relative theta band power at temporal and central regions
indicated a significant decrease from TaskRest1 to Pre-MF
and remained at the same significance level until the end
(TaskRest2). Relative theta band power showed a trend
that there was a significant decrease from TaskRest1 to
Pre-MF with a significant increase in Post-MF, followed by
a significant increase at the occipital region in TaskRest2
while the trend remained the same significance in TaskRest2
at the frontal brain region. Additionally, Relative theta at
midline and parietal brain regions indicated a significant
decrease from TaskRest1 to Post-MF followed by a significant
increase in TaskRest2. However, we did not observe any
pattern of relative theta band power in prefrontal across rest
states.
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Fig. 4. A) The percentage of relative occurrence of the spectral features across participants in the classification of Pre-MF and Post-MF. B) The
percentage of relative occurrence of the channels across participants in the classification of Pre-MF and Post-MF.

Relative alpha band power at midline, temporal, pari-
etal, frontal, and central brain regions indicated a significant
increase from TaskRest1 to Post-MF with a significant
decrease in TaskRest2 while the behavior of relative alpha
band power did not change in significance level from
TaskRest1 to Pre-MF followed by an increase in Post-MF and
decrease in TaskRest2 at prefrontal and occipital brain regions.

Total beta power at central, midline, temporal, frontal, and
occipital brain regions indicated a significant increase from
TaskRest1 to Pre-MF with a significant decrease in Post-MF,
followed by a significant increase at the end. Total beta band
power at parietal and prefrontal brain regions remained at the
same significance level from TaskRest1 to Pre-MF. Then, there
was a significant decrease in Post-MF followed by a significant
increase in TaskRest2.

Relative beta band power at temporal, central, frontal, and
occipital brain regions show that there was a significant
increase from TaskRest1 to Pre-MF with a significant decrease
in Post-MF, followed by a significant increase in TaskRest2.
On the other hand, relative beta band power at parietal brain
region indicated a significant decrease from TaskRest1 to
Post-MF followed by a significant increase in the TaskRest2.
Relative beta band power at prefrontal brain region remained
the same level significance from TaskRest1 to Pre-MF, Then,
the trend decreased in significance level in Post-MF, followed
by increase in significance level in TaskRest2. Relative beta
band power in midline remained in the same significance level
from TaskRest1 to Pre-MF. Then the trend showed a significant
decrease in Post-MF followed by a significant increase in
TaskRest2

As we described above, the proposed classification scheme
summarized in Fig. 2.B was used to identify significant dif-
ference between the resting state EEG data before and after a

MF meditation exercise. Recall that, the overall classification
and validation framework includes three main parts (i) clas-
sification of EEG data before (Pre-MF) and after (Post-MF)
the MF meditation exercise using an RBF SVM classifier;
(ii) Obtaining SVM scores of TaskRest1 and TaskRest2 using
the trained SVM classifier generated from step i (iii) Cal-
culating the symmetric Kullback Leibler (Sym KL) distance
metric of the distance between SVM scores of resting states
to validate the MF prime.

The performance metrics include the accuracy, sensitivity,
specificity and F1 scores. As seen in Fig. 3, the average
accuracy is 80.76 % (range 65.89-96.36%) while the average
sensitivity (correct identification of Pre-MF) is 78.24% (range
41.33-97.74%). The average specificity (correct identification
of Post-MF) is 82.14% (range 67.60%-96.84%) for all par-
ticipants. F1-scores indicate an average value of 0.79 (range
0.50-0.96) across all participants. The performance measure-
ments of Pre-MF and Post-MF classification by the RBF SVM
classifier are presented for each participant in Table S2 in
the supplementary document. Furthermore, we applied the
two-sided Wilcoxon rank-sum test on the classification accura-
cies, sensitivities, and specificity between the two testing sites.
The results indicated that there was no significant difference
across sites using classification accuracy, sensitivity, specificity
with p-values of 0.485, 0.073, and 0.5354, respectively. This
means that we fail to reject the null hypothesis (that the data
between the two sites come from different distributions) and
therefore we combined the data across sites for our analysis.
From applying the WSFS algorithm during the classification,
we found the most significant features in performing Pre-MF
versus Post-MF classification within each participant. Notably,
all features contributed to the classifier, with a minimum
occurrence of 10.70% (Total Power in Theta band).
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Fig. 5. The distribution of SVM scores of resting-states across participants A. illustrates the distribution of SVM scores of Pre-MF and Post-MF.
B. demonstrates separability between distribution of SVM scores of TaskRest1 and Pre-MF while C. depicts the separation between the distribution
of SVM scores of Post-MF and TaskRest2.

The percentage of the relative occurrence of the spectral fea-
tures and channels across participants is illustrated in Fig. 4.
Fig. 4.A indicates that total power contributed to 13.27% of
all significant features. Total power in the Beta band also had
a high significance of 18.08%. The total power in the Theta
and Alpha frequency bands contributed to the classification
with 10.70% and 12.85%, respectively. The relative power in
the Beta band contributed 16.98% and the relative power in
the Theta band contributed 11.29% while the relative power
in the Alpha band contributed 16.84% to the classification.
Fig. 4.B shows the percent contribution of the most prominent
channel regions across participants in the classification of
Pre-MF versus Post-MF. The frontal channels (F3, F4, F7, F8)
and temporal channels (T3, T4, T5, T6) showed the highest
percentage of contribution in the classification of Pre-MF
versus Post-MF with 20.37% and 19.07%, respectively across
participants. The distribution of the selected features for each
individual for Pre-MF and Post-MF classification problem is
shown in the supplementary document in Table S3.

To provide further insight into resting state EEG separa-
tion before and after MF exercise classification (Pre-MF vs
Post-MF classification). The distribution of SVM scores is
plotted in Fig. 5. In this figure, the X-axis indicates SVM
score values while the y-axis indicates the frequency of the
SVM score values. Fig. 5.A depicts the separation between
the distribution of SVM scores for Pre-MF and Post-MF.
The separation between the distribution of SVM scores of
TaskRest1 and Pre-MF can be found in Fig. 5.B and Fig. 5.C

demonstrates the distinction between the distribution of SVM
scores of Post-MF and TaskRest2. As anticipated, Fig. 5
indicates that there is a larger separation between Pre-MF
and Post-MF (MF condition) and both smaller separation
between TaskRest1 and Pre-MF (No MF condition 1) and
smaller separation between Post-MF and TaskRest2 (No MF
condition 2). To get a numerical value of resting state EEG
separation, we calculated the Sym KL distance metric as
described in equations (2) and (3) in Section 2.5. We calculated
that probabilities of Distances 1 and 2 being greater than zero
in order to show that the separation between Pre-MF and
Post-MF is larger than the separation between any two other
baselines. Specifically, our results indicated that the separa-
tion between Pre-MF and Post-MF (MF condition) is higher
than both the separation between TaskRest1 and Pre-MF
(No MF condition 1) and the separation between Post-MF
and TaskRest2 (No MF condition 2) with probabilities of
0.6286 and 0.8857, respectively. Thus, these probabilities are
above chance (0.5) and indicate that the classifier describes
an effect of the MF meditation exercise rather than temporal-
linear drift (i.e., procedural order effect).

IV. DISCUSSION

The purpose of our research was to establish a classification
system that could effectively measure if a brief MF medita-
tion exercise influenced brain activity by finding separation
between resting state EEG data before and after the MF
meditation practice. We have obtained comprehensive results
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showing that our proposed classification framework, using a
non-linear combination of selected EEG-features from selected
channel locations, distinguished Pre-MF and Post-MF resting
states with an average accuracy, sensitivity, and specificity of
80.76%, 78.24% and 82.14%, respectively across all partici-
pants. Additionally, we found frontal channels and temporal
channels, and total power in beta band (16-30Hz), and relative
power in alpha band (8-12Hz) and total power (4-30 Hz) to be
most informative in separating before and after MF meditation
exercise.

Next, we investigated each averaged raw-EEG feature over
all channels by applying Wilcoxon rank-sum tests between
Pre-MF and Post-MF resting states. As a result, total alpha,
total theta, relative alpha band, and total power were signif-
icantly higher in Post-MF while total beta band and relative
beta band were significantly higher in Pre-MF. However, rela-
tive theta band power did not show any significant difference
in Pre-MF vs Post-MF rest state. After, we investigated each
averaged raw-EEG feature over brain regions and found that
total alpha band and relative alpha band, and total power
were significantly higher in Post-MF while total beta band and
relative band power were significantly higher in Pre-MF rest
state at all brain regions. On the other hand, relative theta band
power did not show any significant difference at temporal and
prefrontal and central brain regions, and total power did not
indicate a significant difference at frontal and occipital brain
regions in Pre-MF vs Post-MF but was significantly higher at
midline, temporal, parietal, prefrontal and central regions in
Post-MF than in Pre-MF.

Furthermore, we investigated the feature propagation aver-
aged over all channels across resting states by performing
Wilcoxon rank-sum tests between (i)TaskRest1 vs Pre-MF,
(ii) TaskRest1 vs Post-MF, (iii) TaskRest1 vs TaskRest2,
(iv) Pre-MF vs Post-MF, (v) Pre-MF-TaskRest2 and
(vi) Post-MF vs TaskRest2. The propagation of total alpha,
relative alpha, and total power band across resting states share
a common trend of a significant increase from TaskRest1 to
Post-MF, followed by a significant decrease in TaskRest2.
In contrast, the total beta and relative beta band power indi-
cated a significant increase from TaskRest1 to Pre-MF with
a significant decrease in Post-MF, followed by a significant
decrease in TaskRest2.

The propagation of each feature averaged over frontal brain
region across rest states indicated a trend that relative beta and
total beta band power with significant increase from TaskRest1
to Pre-MF. The trend decreased in Post-MF, followed by a
significant increase in TaskRest2. Relative alpha and total
alpha power averaged over frontal brain region indicated that
there was a significant increase from TaskRest1 to Pre-MF
with a significant increase in Post-MF, followed by a signif-
icant decrease in TaskRest2. Relative theta power averaged
over frontal brain region indicated that there was a significant
decrease from TaskRest1 to Pre-MF with a significant increase
in Post-MF while the trend remained the same significance in
TaskRest2 at the frontal brain region. Total power averaged
over frontal brain region showed a significant increase from
TaskRest1 to Pre-MF while the trend remained the same
significance from Post-MF to TaskRest2. Total theta band

power indicated a trend that remained the same significance
from TaskRest1 to Pre-MF while the trend decreased from
Post-MF to TaskRest2. The propagation of total power, total
alpha band power and relative alpha band power averaged over
temporal brain region indicated that there was a significant
increase from TaskRest1 to Pre-MF with a significant increase
in Post-MF, followed by a significant decrease in TaskRest2.
Conversely, the total beta relative beta power showed a sig-
nificant increase from TaskRest1 to Pre-MF with a significant
decrease in Post-MF, followed by a significant decrease in
TaskRest2 at the temporal brain region. Total theta band power
indicated a trend that remained the same significance from
TaskRest1 to Pre-MF. Then, the trend increased in Post-MF
followed by a significant decrease in TaskRest2. Relative theta
power showed that there was a significant decrease from
TaskRest1 to Pre-MF while the trend remained the same
significance from Post-MF to TaskRest2 at the temporal brain
region. Overall, we did not find any significance in relative
theta band power averaged over brain regions of temporal,
prefrontal and central brain regions by performing Wilcoxon
rank-sum tests in Pre-MF vs Post-MF rest states. Similarly,
the relative theta band power averaged over all channels did
not show any significance by applying Wilcoxon rank-sum test
over Pre-MF vs Post-MF rest states. On the other hand, our
classification technique indicated a clearer separation between
resting states before and after the MF meditation exercise since
SVM scores are a result of nonlinear transformations of the
above-mentioned features.

Finally, we validated our proposed classification scheme
describes an effect of the MF meditation exercise rather than
temporal-linear drift using the symmetric Kullback Leibler
(Sym KL) distance metric to measure the distance between
SVM scores for resting states. To find separation between
the resting states, we first performed feature selection, which
optimized the performance of the RBF SVM classifiers. The
benefit of performing feature selection at the individual level is
that it enhances classification results without requiring features
to be significant among all participants. Although group trends
can be insightful, each participant is different and tailoring
classification to each individual will provide the best results.
Furthermore, RBF SVM classifiers were used because all
features themselves were not separable in terms of different
resting state EEG data. The classifiers generate non-linear
combinations of features which are separable, also making the
SVM score output of the classifiers separable. Another benefit
of using classification is that it inherently denoises the EEG
data. Any random effects seen in an individual EEG trial are
effectively ignored since the classifier is trained to find trends
across all EEG trials.

This project sought to develop an objective measurement
of MF meditation in ASD, given the limitations of using
self-report measurement of MF in ASD. This approach has
the potential to strengthen the scientific measurement and
findings of using MF meditations with individuals and families
with ASD. We observed the most significant changes in
frontal and temporal region activity before and after the MF
meditation. In addition, total beta band power and relative
theta band power and total power contributed significantly to
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the classification of before and after MF meditation exercise.
This aligns with previous research and shows consistency
between the effects of MF in previous research on typically
developing individuals and other psychiatric conditions [19],
[22]. Previous research showed that MF resulted in increases in
the alpha power band and theta band for typically developing
populations. Similarly, in our study, we found that alpha band
power and theta band power resulted in a significant increase
due to 2-minutes brief mindfulness meditation exercise for
individuals with autism spectrum disorder by performing
Wilcoxon rank-sum test over Pre-MF vs Post-MF rest state
represented by these features averaged over all channels
(See Table I.)

While the aforementioned studies provide evidence for EEG
data as a sensitive measure to assess the impact of MF
meditation in neurotypical populations, there is a notable
variability in both the duration of the MF exercise and the
inclusion of healthy control groups. In literature, most of the
brief mindfulness intervention studies ranged from less than
5 to 25 min in length, with an average length of 15 min [35].
To our knowledge, we are the first to investigate the impact
of a brief two-minute MF meditation exercise in an ASD
population by detecting the changes in EEG.

Our study has three main limitations. The first one is that we
did not have a control group. This affects the ease of showing
changes in EEG were in fact due to the MF meditation
exercise. However, we illustrated the validation of MF exercise
prime rather than linear drift using the symmetric Kullback
Leibler (Sym KL) distance metric of the distance between
SVM scores for resting states as described in Section 2.5.
The second is that the study design limits the ability to make
conclusions on the lasting impact of the brief MF meditation,
as participants only completed the study procedures and brief
mindfulness exercise once. Finally, this work was completed
on a small sample of youth with ASD, and we are not able
to draw conclusions for other age groups. However, we do
anticipate that the classification system developed can be
utilized in future work with larger samples and age groups.
Future work might explore the effects of different durations
of MF meditation exercises as well as the impact of regular
meditation practice versus occasional meditations

V. CONCLUSION

In summary, we developed a classification system that is
able to detect changes in resting state EEG behavior before
and after a brief MF meditation exercise designed specifically
for youth with ASD. We found that total power and total
power in beta band, total power in theta band showed a high
significance in classification of before and after MF meditation
exercise. The results of this study suggest that MF medita-
tions, even brief, may have promising impact for youth with
ASD and warrants further exploration. While our findings are
promising, it still remains an open question if these detected
neural responses will translate to more global outcomes in
improved mental health symptoms and adaptive behaviors.
We demonstrated that machine learning can be used to better
find the separability between resting states. In future work,
we aim to identify sub-groups of individuals with ASD that

share similar features at certain electrode locations that help
distinguish resting state EEG before and after MF exercise.
Furthermore, we aim to develop investigate the trial-by-trial
behavior/propagation of the selected features and non-linear
combination of these features during resting states and MF
exercise as a potential means to investigate changes in EEG
due to changes in impaired emotional regulations.
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